Electromagneto squeezing rotational flow of Carbon (C)-Water (H2O) kerosene oil nanofluid past a Riga plate: A numerical study

نویسندگان

  • Tasawar Hayat
  • Mumtaz Khan
  • Muhammad Ijaz Khan
  • Ahmed Alsaedi
  • Muhammad Ayub
چکیده

This article predicts the electromagneto squeezing rotational flow of carbon-water nanofluid between two stretchable Riga plates. Riga plate is known as electromagnetic actuator which is the combination of permanent magnets and a span wise aligned array of alternating electrodes mounted on a plane surface. Mathematical model is developed for the flow problem with the phenomena of melting heat transfer, viscous dissipation and heat generation/absorption. Water and kerosene oil are utilized as the base fluids whereas single and multi-wall carbon nanotubes as the nanomaterials. Numerical solutions of the dimensionless problems are constructed by using built in shooting method. The correlation expressions for Nusselt number and skin friction coefficient are developed and examined through numerical data. Characteristics of numerous relevant parameters on the dimensionless temperature and velocity are sketched and discussed. Horizontal velocity is found to enhance for higher modified Hartman number.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three Dimensional Non-linear Radiative Nanofluid Flow over a Riga Plate

Numerous techniques in designing zones happen at high temperature and functions under high temperature are in a way that involves non-linear radiation. In weakly conducting fluids, however, the currents induced by an external magnetic field alone are too small, and an external electric field must be applied to achieve an efficient flow control. Gailitis and Lielausis, devised Riga plate to gene...

متن کامل

Numerical analysis of thermal-hydraulic properties of turbulent aerosol-carbon black nanofluid flow in corrugated solar collectors with double application

In this study the effects of corrugated absorber plate and using aerosol-carbon black nanofluid on heat transfer and turbulent flow in solar collectors with double application and air heating collectors, were numerically investigated. The two-dimensional continuity, momentum and energy equation were solved by finite volume and SIMPLE algorithm. In the present investigation all the simulations w...

متن کامل

Numerical Study of Entropy Generation in a Flowing Nanofluid Used in Micro- and Minichannels

This article mainly concerns theoretical research on entropy generation influences due to heat transfer and flow in nanofluid suspensions. A conventional nanofluid of alumina-water (Al2O3-H2O) was considered as the fluid model. Due to the sensitivity of entropy to duct diameter, miniand microchannels with diameters of 3 mm and 0.05 mm were considered, and a laminar flow regime was assumed. The ...

متن کامل

Axisymmetric Magnetohydrodynamic Squeezing flow of Nanofluid in Porous Media under the influence of Slip Boundary Condition

The various industrial, biological and engineering applications of flow of squeezing flow of fluid between parallel plates have been the impetus for the continued interest and generation renewed interests on the subject. As a part of the renewed interests, this paper presents the study of axisymmetric magnetohydrodynamic squeezing flow of nanofluid in porous media under the influence of slip bo...

متن کامل

Free Convective Heat Transfer of Mhd Dissipative Carreau Nanofluid Flow over a Stretching Sheet

Nowadays external magnetic fields are capable of setting the thermal and physical properties of magnetic-nanofluids and regulate the flow and heat transfer characteristics. The strength of the applied magnetic field affects the thermal conductivity of magnetic nanofluids and makes it aeolotropic. With this incentive, we investigate the flow and heat transfer of electrically conducting liquid fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017